Interpolation of fuzzy data by using quartic piecewise polynomials induced from E(3) cubic splines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation of fuzzy data by using flat end fuzzy splines

In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.

متن کامل

Piecewise cubic interpolation of fuzzy data based on B-spline basis functions

In this paper fuzzy piecewise cubic interpolation is constructed for fuzzy data based on B-spline basis functions. We add two new additional conditions which guarantee uniqueness of fuzzy B-spline interpolation.Other conditions are imposed on the interpolation data to guarantee that the interpolation function to be a well-defined fuzzy function. Finally some examples are given to illustrate the...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Interpolation by Cubic Splines on Triangulations

We describe an algorithm for constructing point sets which admit unique Lagrange and Hermite interpolation from the space S 1 3 (() of C 1 splines of degree 3 deened on a general class of triangulations. The triangulations consist of nested polygons whose vertices are connected by line segments. In particular, we have to determine the dimension of S 1 3 (() which is not known for arbitrary tria...

متن کامل

Geometric Hermite interpolation by cubic G1 splines

In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Sciences

سال: 2012

ISSN: 2251-7456

DOI: 10.1186/2251-7456-6-40